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Treatment of ketoaziridine 4 with aqueous formaZdehyde gives the unusuai: bridged indenobenz- - 

azepine derivative S whose reduction with sod&m cyanoborohydride produces trans ketol 8. IYI _ 
the presence of hydrochloric acid, 8 undergoes irreversible conversion to the more stable cis - 

ketol 10. - Periodate oxidation of 8 supplies y-lactone II. NaBH4 reduction of ZfolZowed by 

acid treatment affords d-la&one 12 which upon reduction and 0-methylation furnishes cis - 

rhoeadine analog 14. - 

Current developments in the chemistry of berbinoids have centered largely upon the chemistry 

of berberinephenolbetaine (2j2 and 8-methoxyberberinephenolbetalne (31.3 One of the more interest- 

ing synthetic routes to the spirobenzylisoquinolines rests upon the existence of a photoequilibri- 

urn between berberinephenolbetaine (21, readily available from berberine (L), and the isolable 

ketoaziridine 4. Regioselective cleavage of the benzylic N-7 to c-8 bond of 4 upon treatment with - 
-4 ethyl chloroformate in refluxing benzene led to the spirobenzylisoquinoline 5. We became inter- 

ested, therefore, in the selective fission of the alternate benzylic N-7 to C-14 linkage of 4 as 

a possible route to the indenobenzazepines and the rhoeadines. 

Irradiation with sunlight for a period of 6 h of a methanolic solution of berberinephenol- 

betaine (2) containing aqueous formaldehyde and a little rose bengal under nitrogen supplied, - 

through the intermediacy of the ketoaziridine 4, a 60% yield of the unusual bridged indenobenz- 

azepine derivative 5, CZIHtSNOS, mp 223-224O C (MeOH-CHC13). Species 6 may also be represented 

by conformational expression 6a in which the seven membered ring exists in a stable chair form. - 

Alternatively, treatment of a methanolic solution of 4 with aqueous formaldehyde at room tempera- - 

ture for 6 h resulted in formation of 6 in 90& yield. The nmr spectrum of the bridged interme- - 

diate 6 shows a characteristic H-8 singlet at 64.80, while the methylene protons of the OCH*N 

bridge appear as an AB quartet at 64.17 and 4.93, J 
7 Hz' gem 

The alternate structure 7 for the product of the formaldehyde reaction was ruled out since it - 

would involve a highly strained system incorporating two trans-fused five membered rings. An 

indication of the more stable arrangement represented by stereo expression 6a for the bridged - 

compound is the fact that actual recovery of the melt following heating to slightly above 224O C 

of compound 6 showed that it still consisted almost exclusively of unchanged material. 

Reduction of the bridged indenobenzazepine derivative 6 with sodium cyanoborohydride at pH - 

c3 in aqueous methanol gave a near quantitative yield of ketol S, Cz1Hz1N06, mp 182-183O C (EtOH), 

whose nmr spectrum shows characteristic H-l and H-8 singlets at 67.17 and 4.40, respectively. 

Alternatively, the conversion of 6 to 8 could be realized with sodium cyanoborohydride in the - - 

presence of dry hydrogen chloride dissolved in either dry methanol or methylene chloride. It 
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follows that 8 must have the B/C trans fused stereochemistry indicated, corresponding to that 

prevailing in the racemic bridged intermediate 6. 

The 0-acetyl derivative &, Cz3Hz3N01, mp 186-187O C (MeOH), formed by treatment of 8 with - 

acetic anhydride in pyridine at room temperature overnight, exhibits an nmr spectrum which inclu- 

des an 0-acetyl singlet at 62.00. 

The trans ketol 8 undergoes an irreversible conversion to the thermodynamically more stable 

cis ketol lo, CZIHZINOB, mp 192-193O C (EtOH), when treated with aqueous hydrochloric acid at 

room temperature. The reaction intermediate must be the resonance stabilized cation 9 -* The nmr 

spectrum of cis ketol 10 includes H-l and H-8 singlets at 67.30 and 4.59, respectively. The - 

material acetylates slowly over a period of several days to furnish 0-acetyl derivative E, 

C23H23N07, mp 178-181° C (MeOH), whose nmr spectrum shows 0-acetyl and H-l singlets at 62.21 and 

7.33, respectively. 

Oxidative cleavage of the trans ketol 8 using sodium metaperiodate in dilute hydrochloric 

acid and methanol supplied the Y-lactone 11, CziHi9N06, mp 179-180° C (EtOH), in 50% yield. This 

lactone is colorless in neutral solution, but a yellow color develops in acid due to cleavage of 

the lactone ring accompanied by iminium ion formation. 

The remaining steps in the synthesis follow well established precedents. 5 Reduction of 11 - 

with methanolic sodium borohydride containing a little hydrochloric acid generated a crude product 

which was refluxed for one hour with dilute hydrochloric acid to furnish in 82% yield the amor- 

phous cis 6-lactone 2, CziHziN06. Dibal in toluene reduction of 12 at -loo C supplied as expect- - 

ed the amorphous hemiacetal 13 (94%), CziHz3NOS. - 0-Methylation with methyl orthoformate then 

gave rise to the desired rhoeadine analog 2, Cz2Hz5N06, In 90% yield, mp 160-162O C (MeOH). 
6 

The present sequence represents a simple and efficient transformation of a protoberberinium 

salt into a cis fused rhoeadine, thus supplying a facile entry to the non-natural rhoeadines 

substituted at c-10,11 rather than at the more usual C-12,13 sites. Almost as importantly, we 

have here a route 

which incorporate 

to indenobenzazepine derivatives of known stereochemistry, such as 8 and lo, 

a ketone at C-13 and a tertiary alcohol at C-14. 

Phvsical and Soectral Data 
7 

Bridged Intermediate 6: Amax 232, 292 nm (log (60 MHZ) 63.93 - ~3.94, 3.83); vmax 1710 cm-l;nmr 

(6H, s, 2xOCH3), 4.17 and 4.93 (2H, ABq, J 7 HZ, OCH*N), 4.80 (lH, s, H-8), 5.87 (2~, S, OCH*O), 

6.62 (lH, s, H-4), 7.03 (lH, d, J 8 Hz, H-111, 7.05 (lH, H-l), 7.61 (HI, d, J s, 8 Hz, H-12); ms 

m/e 381 (MC, 54), 353 (1001, 352 (63), 324 (501, 297 (52), 148 (20); Rf 0.72. 

trans Ketol 8: --- Xmax 232, 292 nm (log E4.04, 3.95); vmax 1705, 3500 cm-l; nmr (360 MHz) 

(3H, s, NCH1l, 3.84 (3H, s, 9-0CH3), 3.97 (3H, s, lo-CCH,), 4.41 (lH, s, H-8), 5.89 and 5 ‘. 

ABq, J 1.5 Hz, OCHZO), 6.67 (lH, s, H-4), 7.09 (III, d, J 8.5 Hz, H-11), 7.17 (lH, S, H-l) 

(lH, d, J 8 Hz, H-12); ms m/e 383 CM', 49), 365 (91), 349 (55), 324 (loo), 190 (54), 177 

176 (80), 165 (59), 149 (47); Rf 0.49. 

trans Acetate 8a: vmax 1705, 1760 cm 
-1 

--- , nmr (360 MHz) 62.00 (3H, s, CH,CO@), 2.85 (3H, s , 

62.79 

91 (2H, 

7.71 

931, 

NCHQ), 

3.87 (3H, s, 0CH3), 3.97 (3H, s, OCHQ), 4.98 (lH, s, H-81, 5.92 and 5.94 (2H, q, J 1.2 Hz, OCHZO), 

6.65 (lH, s, H-41, 7.06 (IH, d, J 8.5 Hz, H-111, 7.64 (lH, s, H-l), 7.68 (lH, d, J 8.5 Hz, H-12); 

ms m/e 425 CM+, 31, 365 (loo), 349 (331, 334 (39), 177 (50); Rf 0.71. 

cis Ketol 10: --- Amax 237, 291 nm (log E 4.12, 4.15);vmax 1705, 3540 cm-'; nmr (360 MHz) 62.65 

(3H, s, NCHQ), 3.93 (3H, s, 9-OCH3), 4.01 (3H, s, lo-0CH31, 4.59 (lH, s, H-81, 5.93 and 5.95 (2H, 

ABq, J 1.5 Hz, OCHZO), 6.56 (lH, s, H-41, 7.09 (lH, d, J 8.2 Hz, H-111, 7.30 (lH, s, H-l), 7.65 
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(.lH, d, J 8.2 Hz, H-12); ms m/e 383 (M+, 33), 368 (22), 365 (31), 349 (24), 324 (51), 190 (15), 

177 (loo), 149 (25); Rf 0.51. 

cis-Acetate 10a: v max 1710, 1735 cm 
-1 

- ; nmr (360 MHz) 62.21 (3H, s, CH,COO), 2.78 (3H, s, NCHQ), 

3.93 (3H, s, 9-ocH3), 4.00 (3H, S, lo-GCHB), 4.97 (IH, s, H-8), 5.91 and 5.94 (2H, ABq, J 1.5 Hz, 

CCHZO), 6.48 (HI, s, H-4), 7.03 (III, d, J 8.2 Hz, H-11), 7.33 (lH, s, H-l), 7.60 (lH, d, J 8.2 Hz, 

H-12); ms m/e 425 (MC, 13), 365 (loo), 349 (36), 334 (34), 177 (55); Rf 0.71. 
-1 

y-Lactone 10: X max 245 sh, 267, 322 nm (log E 4.32, 4.28, 3.85);vmax 1685, 1755 cm ; nmr (200 - 

MHz) 62.27 (3H, s, NCH3), 3.80 (3H, s, 9-0CH3), 3.95 (3H, s, lo-OCHQ), 6.00 and 6.02 (2H, ABq, J 

1.5 Hz, OCHZO), 6.70 (lH, s, H-4), 7.00 (III, s, H-l), 7.12 (HI, d, J 8.5 Hz, H-11), 7.62 (III, d, J 

8.5 Hz, H-12); ms m/e 397 (M+, 53), 369 (54), 324 (95), 294 (88), 176 (loo), 148 (82); Rf 0.64. 

6-Lactone 11: X max 260, 285 nm (log E 4.05, 3.97); umax 1725 cm -1 - ; nmr (200 MHZ) 62.15 (3~, s, 

NCHQ), 3.81 (lH, d, J < 1 Hz, H-2), 3.89 (3H, s, lo-OCHQ), 3.97 (3H, s, ll-CCHQ), 5.07 (lH, d, J 

<l Hz, H-l), 5.96 (2H, s, OCHZO), 6.65 (lH, s, H-61, 6.66 (HI, s, H-9), 7.01 (HI, d, J 8.5 Hz, 

H-12), 7.88 (lH, d, J 8.5 Hz, H-13); ms m/e 383 CM', 13), 206 (72), 190 (loo), 177 (24); Rf 0.56. 

Hemiacetal 12: - nmr (200 MHz) 62.26 (3H, s, NCHQ), 3.50 (III, s, OH), 3.71 (lH, d, J < 1 Hz, H-2), 

3.86 (3H, s, 0CH3), 3.91 (3H, s, 0CH3), 4.48 (HI, d, J < 1 Hz, H-l), 5.90 (HI, s, I$OH), 5.93 and 

5.95 (2H, ABq, J 1.3 Hz, CCHzO), 6.63 (HI, s, H-6), 6.67 (HI, s, H-91, 6.92 (HI, d, J 8.5 Hz, H-12), 

7.07 (lH,d, J 8.5 Hz, H-13);ms m/e 385 (M+,l.l), 384 (4), 366 (9), 222 (loo), 179 (43); Rf 0.37. 

Rhoeadlne 13: A max 228,285 nm (4.27, 3.84); nmr (60MHz) 62.30 (3H,s,NCH3), 3.50 (3H,s,0CHQ),3.80 (3H, s, - 

OCH& 3.83 (3H,s, CCH3), 3.96 (HI, d, J<l Hz, H-2), 4.83 (lH, d, J<l Hz, H-l), 5.63 (HI, acetal HI, 

5.88 C2H,s,0CHZO), 6.60 (III, s, H-6), 6.70 (lH, s, H-9), 6.86 (lH,d, J 8.5 Hz, H-121, 7.06 (III, d, J 

8.5Hz, H-13); ms m/e 399 (M+,65), 384 (70), 349 (32), 222 (20), 190 (20), 177 (100); Rf 0.36. 
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The numbering system adopted here for the indenobenzazepine derivatives is in accord with that 

for the protoberberines and spirobenzylisoquinolines. TLC was on Merck Silica Gel ~-254 glass 

plates, and the developing solvent was MeOH-CHC13 4:96 v/v. LJV spectra are in EtOH, and ir 

spectra are in CHC13. All nmr spectra were obtained in CDC13 solution using TMS as the inter- 

nal standard. 

8. AII compounds are racemstes. 
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